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Chapter 1

Introduction

Issue tracking systems, such as Bugzilla, Jira, and many others, are used by

many software development teams to track developer progress, assign tasks,

and, manage products. In our work, we built on previous research [1, 2, 3] in

analysing features of a Jira dataset provided by Ortu et. al. [4]. In addition to

the Jira issue report features, which include priority, start and end datetimes,

reportee, assignee, and other fields related to issue tracking, the dataset also

includes emotion and sentiment related features derived from the comments

about the issues.

Additionally, we have explored various models and features to predict cer-

tain classes of the issues. Using several models including SVM and XGBoost,

we obtain high precision and recall scores when predicting issue completion

time, issue resolution, and, issue priority. Our results and models can be used

by software development product managers and senior engineers to self eval-

uate software developers and teams and improve software development life
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cycles.

Our work is motivated by attempting to analyze software developers and

gain insight into their habits. We aimed to answer questions such as: What is

most important in pushing developers to complete issues? Does sentiment and

emotion play a role in helping resolve issues quickly? What is most important

in categorizing an issue as important or not (besides the obvious label prior-

ity)? In answering such questions, we believe that we can gain insight into the

workflow of software developers and help to better manage them.
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Chapter 2

Background

2.1 Support Vector Machines

Support vector machines (SVMs) are a set of classification and regression ma-

chine learning methods applied to a wide set of problems. Invented in 1963 and

expanded to tackle non-linear classification problems in 1992 with the applica-

tion of a kernel, SVMs aim at finding optimal hyperplanes, the boundaries with

the maximal margin of separation between two classes. A boundary is found

in some N-dimensional space which separates points of type A from points of

type B. After the hyperplanes are found, new test data can be classified using

the separating hyperplanes [5].

Let {xi, yi}, i = 1, 2,..., L be L training data vectors xi with class labels yi, and

yi ∈ {-1, +1} for binary classification. Given an input vector x, the training of an

SVM constructs a classifier of the form:
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g(x) = sign(
L∑
i=1

αiyiK(xi, x) + b) (2.1)

where {αi} are non-negative Lagrange multipliers each of which corresponds

to an example from the training data, b is a bias constant, and K(· , ·) is a kernel

function. During the training phase, in order for SVMs to easily map a dataset

to a higher dimensional space and search for an optimal linear hyperplane,

a kernel is applied to every pair of input vectors. Kernels are functions that

take two inputs and output the similarity of the inputs. Frequently used kernel

functions are the polynomial kernel K(xi, xj) = (xi · xj + 1)d and the Gaussian

radial basis function (RBF) K(xi, xj) = e
−|xi−xj |

2

2σ2 [5]. Gaussian kernels tend to

yield good performance under general smoothness assumptions [6].

Figure 2.1 illustrates an optimal hyperplane for two classes of training data.

The Kernel function effectively maps the original data from one space to an-

other space. In R2, the data is not linearly separable. However, the data is

linearly separable after being mapped to a higher dimension, R3, commonly

known as the "kernel trick" [5].
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FIGURE 2.1: Projection of data into higher dimension where data is lin-
early separable [7]

Classification with an SVM is fast because the SVM only uses data points

closest to the maximum margin hyperplane, known as support vectors, for clas-

sification as opposed to all of the available data. Figure 2.2 helps explain the

concept of support vectors.

FIGURE 2.2: SVM with maximum marginal supports, or support vectors
[8]

SVMs are designed for binary classification. In order to perform multi-

class classification, two commonly used methods are one-versus rest and one-

versus-one approaches. The one-versus-rest method constructs k classifiers
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for k classes, each of which separates a class from the rest of the data, and a

test data point will be classified as the class with the largest margin. The one-

versus-one method constructs a classifier for each pair of classes. The test data

point is classified as the class chosen by the most classifiers [5].

2.2 Gradient Boosting

Gradient boosting (GB) is a regression and classification supervised machine

learning method in the form of an ensemble of weak prediction models, typ-

ically decision trees. The idea was proposed by Leo Breiman in 1997 [9] and

further developments were made by Jerome H. Friedman and many others [10,

11]. GB aims to combine outputs of many "weak" classifiers to produce a pow-

erful "committee", in an iterative fashion, often minimizing a loss function. An

implementation known as "iterative functional gradient descent algorithms"

optimize a loss function by iteratively choosing a function or weak hypothesis

that points in the negative gradient direction. As such, each step of the algo-

rithm correctively updates the error of the loss function.

The loss in using f(x) to predict y on the training data is:

L(f) =
N∑
i=1

L(yi, f(xi)). (2.2)

The goal is to minimize L(f) with respect to f at each step of the solution tree.

Thus, the tree predictions T (xi, θm) are analogous to the components of the
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negative gradient [12].

A generic gradient tree-boosting algorithm is described in Algorithm 1 [12].

Specific algorithms can be obtained by using different loss functions L(y, f(x)).

Algorithm 1 Gradient Tree Boosting Algorithm.

Initialize f0(x) = argminγ
∑N

i=1 L(yi, γ).
for m = 1 to M do

for i = 1, 2, . . . , N do
rim = −[∂L(yi,f(xi))∂f(xi)

]f=fm−1 .
end for
Fit a regression tree to the targets rim giving terminal regions Rjm, j =

1, 2, . . . , Jm.
for j = 1, 2, . . . , Jm do

γjm = argminγ
∑

xi∈Rjm
L(yi, fm−1(xi) + γ).

end for
Update fm(x) = fm−1(x) +

∑Jm
j=1 γjmI(x ∈ Rjm).

end for
Output f̂(x) = fM (x).

First, initialize the optimal constant model, which is just a single terminal

node tree. Next, iteratively update the model by computing the negative gra-

dient of the loss function, referred to as generalized or pseudo residuals, r. This

is done an arbitrary amount of times, with each iterative progressively updat-

ing the model. Build the base learner to these pseudo residuals using training

data to fit a regression tree and solve a one dimensional optimization problem

to find γjkm - to which the model is updated. After this is done iteratively, the

output f̂ is obtained.
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2.3 XGBoost

A modern and popular implementation of gradient tree boosting is known as

XGBoost [13]. Short for "eXtreme Gradient Boosting", XGBoost provides a "scal-

able, portable and distributed gradient boosting (GBM, GBRT, GBDT) Library"

which is open source. It is a scalable end-to-end tree boosting system that is

widely used by data scientists to achieve state of the art results in many ma-

chine learning challenges and competitions. The speed, efficiency, portability,

and high performance of the algorithm makes it appealing to many machine

learning applications.

A few advantages of using XGBoost include speed and memory efficiency.

The most time consuming part of tree learning is to get the data into sorted

order. In order to reduce this computation time, XGBoost stores the data in in-

memory units, which are called blocks. Data in each block is stored in the com-

pressed column (CSC) format, with each column sorted by the corresponding

feature value. This input data layout only needs to be computed once before

training, and can be reused in later iterations. This structure also helps with the

approximation algorithms using in gradient boosting. Using the stored block

structure, the algorithm to approximate tree split points (known as the quan-

tile finding step) becomes a linear scan over the sorted columns. Additionally,

collecting statistics for each column can be parallelized, giving us a parallel

algorithm for split finding.
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To increase memory efficiency, XGBoost implements a cache-aware prefetch-

ing algorithm to limit the number of cache-misses. The algorithm allocates an

internal buffer in each thread, fetching the gradient statistics into it, and then

performs accumulation in a mini-batch manner. This prefetching changes the

direct read/write dependency to a longer dependency and helps to reduce the

runtime overhead when the number of rows in the block is large, which is quite

frequent.

2.4 Bug Attribute Prediction

An issue tracking system is a software repository that hosts all development

tasks of a software organization, e.g., new features, bug fixes and other main-

tenance tasks. For each task, the system provides a description, administrative

metadata such as the state of the issue (e.g., opened, resolved, or unable to fix),

the priority, comments made by members of the team, attachments and other

various information necessary to manage the project. With this information,

many have attempted to explore how developers interact [14], as well as how

they feel about the project and their peers [15, 16]. Attempts in predicting issue

completion time could help product managers better plan their development

cycle when using issue tracking systems.

In an issue comments section, developers discuss issues by providing tech-

nical details and/or opinions. From this textual information it is possible to
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extract emotions, sentiments, and politeness. Murgia et al. [15] showed that

developers do express emotions such as love, joy, and, sadness towards col-

leagues. Ortu et al. [14] showed that emotions contained in these issue com-

ments have negligible correlation with each other. More of these related works

are discussed in Section 3.

2.5 The Jira Dataset

Jira is one of the most common issue tracking systems. Developed by Atlassian

in 2002, Jira is a proprietary issue tracking product providing bug/issue track-

ing and product management functions. The name derives from a truncation

of Gojira, the Japanese name for Godzilla, itself a reference to Jira’s main com-

petitor Bugzilla. According to Atlassian, Jira is used by over 25,000 customers

in 122 countries around the world. Written in Java, Jira supports remote pro-

cedure calls, REST, SOAP, XML-RPC and has integration with source control

programs such as Git, Mercurial, Subversion and others. It ships with various

translations including English, French, German, Spanish, and, Japanese. The

main features of Jira for agile software development are the ability to plan de-

velopment iterations, create iteration reports, and track bug functionality [3].

A public Jira dataset is provided by Ortu et al. [4]. The authors mined the

issue repository of the Apache software foundation gathering data from over

one thousand projects, seven hundred thousand issue reports and two million
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comments. In addition to the Jira issue report features, which include prior-

ity, start and end datetimes, reportee, assignee, and other fields related to issue

tracking, the dataset also includes emotion and sentiment related features de-

rived from the comments about the issues. The dataset is useful for studying

productivity [17], projects’ attractiveness to new developers [17], building pre-

dictive models to analyze social and technical debt in software development

[18, 19], estimating bug fixing time and bug life cycles [20], testing hypotheses

concerning software maintenance and studying the relationships among soft-

ware metrics [21], etc.

2.6 Jira Feature Analysis

FIGURE 2.3: An example JIRA Service Desk issue [3]

An example Jira issue can be seen in Figure 2.3. Although organizations can

make use of Jira in different manners, all Jira issues have a general commonal-

ity. Descriptive fields include project name, labels, description, creation date,
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resolved date, reportee (the person who created and is managing the issue), as-

signee (the person who is responsible for the task of the issue), priority, status,

and resolution. An issue type can be a bug, improvement, new feature, task,

or custom issue. A priority can be highest, high, medium, low, or lowest. A

status can be open, in progress, resolved, reopened, or closed. A resolution

can be fixed, won’t fix, duplicate, incomplete, cannot reproduce, won’t do. In

addition to these descriptive fields, developers are able to comment on an is-

sue and share opinions, thoughts, actions, or advice. An issue can have several

developers, known as "watchers", who follow it and receive notifications. De-

velopers are able to "vote" on an issue to voice a preference that it be resolved

or completed.

Sentiment scores are measured using the SentiStrength tool [22], which is

able to estimate the degree of positive and negative sentiment in short texts,

even for informal language. The tool reports two scores, as research has shown

that humans positive and negative sentiment in parallel [23] - hence mixed

emotions.

Mood has been measured using a tool by De Smedt et al [24]. Pattern for

Python is a package with functionality for web mining (Google + Twitter +

Wikipedia, web spider, HTML DOM parser), natural language processing (tag-

ger/chunker, n-gram search, sentiment analysis, WordNet), machine learning
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(vector space model, k-means clustering, Naive Bayes + k-NN + SVM classi-

fiers) and network analysis (graph centrality and visualization). The tool does

not specialize in one domain but provides general cross-domain functionality

Politeness has been measured using Danescu et. al.’s tool [25]. They pro-

posed a computational framework for identifying the linguistic aspect of polite-

ness using domain-independent lexical and syntactic features operationalizing

key components of politeness theory, such as indirection, deference, impersonal-

ization, and, modality.
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Chapter 3

Related Works

3.1 Sentiment and Emotion Mining in Software Development

A recent trend has emerged to promote positive aspects of happiness and affect

in general, e.g. [14, 26, 27, 28, 29, 30, 31, 32]. It has been shown that positive

emotions like happiness help people to be more creative [33]. In software de-

velopment, previous research has shown that emotions effect task quality, pro-

ductivity, creativity, group rapport and job satisfaction [34]. Developers and

managers alike need to be aware of the emotions and feelings of the people

working on projects they are involved with to take corrective action where nec-

essary.

Sentiment polarity analysis has been applied in the software engineering

context to study commit comments in GitHub [35, 36], GitHub discussions re-

lated to security [37], and, the activity of contributors in Gentoo [38]. Guz-

man et. al. [35] used lexical sentiment analysis to study emotions expressed
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in commit comments of different open source projects and analyzed their re-

lationships with different factors such as programming language and time of

day. They found that projects developed in Java tend to have more negative

commit comments, as do commit comments written on Mondays. Ortu et. al.

[39] found that team diversity (gender and nationality) is linked with lower

issue fixing time.

The Jira dataset provided by Ortu et. Al [4] has been analyzed by many.

Murgia et. al. [15] showed that developers do express emotions such as love,

joy, and, sadness towards colleagues and software artifacts. Ortu et. al. [14]

showed that emotions contained in these issue comments have negligible cor-

relation with each other. They also showed that bug fixing time correlates with

the affects expressed by developers in issue comments. Murgia et. al. [40]

and Ortu et. Al. [14] showed that issue fixing time is related respectively to

the type of maintenance performance and the affects in issue reports. Ortu et.

al. showed that the more polite developers were, the more new developers

wanted to be a part of a project and the more they were willing to continue

working on it over time [41]. In addition, Ortu et. al. [2] found the presence of

developers’ communities for 7 open source projects hosted in Jira showing that

social interaction is a large part of the software development field.
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3.2 Uses of SentiStrength

SentiStrength extracts sentiment strength from informal English text, using new

methods to exploit the de facto grammars and spelling styles of cyberspace

[42].This tool simultaneously assigns both a positive and a negative score to bits

of English text, as research shows that humans can express both types of sen-

timent in parallel. Positive sentiment strength scores range from +1 (not pos-

itive) to +5 (extremely positive). Similarly, negative sentiment strength scores

range from -1 to -5. The tool works by assigning scores to tokens in a dictio-

nary which includes common emoticons. The final sentiment strength for a

bit of text is then computed by taking the maximum score among all individ-

ual positive scores, and similarly for the negative sentiment strength. Previous

research has shown that SentiStrength has a good accuracy for many applica-

tions of short text in Twitter and movie reviews [43], Yahoo! Answers [44], and,

Stack Overflow [45]. Bazelli et. al. [46] studied the personality traits of authors

of questions on StackOverFlow and showed that top reputed authors are less

neurotic, more extroverted and open compared to medium and low reputed

authors.

3.3 Predicting Bug Fix Time

Previous research in predicting bug fix time has used various datasets, feature

and model analysis. Giger et. al. [1] explored prediction models in a series of
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empirical studies with bug report data taken from Bugzilla of the three open

source projects Eclipse, Mozilla, and, Gnome. Classifying bug reports into fast

and slow using attributes such as assignee, reportee, and, monthOpened shows

precision and recall between 60% and 70%. Post-submission data of bug re-

ports improves the performance of prediction models by 5% to 10%, including

information such as milestone. Similarly, Zhang et. al. [47] uses Markov-based

methods to estimate the total amount of time required to fix a bug, in a similar

fast and slow category and saw similar results to Giger et. al. Using multivari-

ate and uni-variate regression testing on the Mozilla project, Bhattacharya et.

al. [48] show results between 30% and 49%.
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Chapter 4

Experimentation

4.1 Overview

In this chapter, we explain our approach to predicting completion time, priority

and, resolution in Jira and the different steps we took throughout our analysis.

In Chapter 5 we further discuss the results of our experiments and potential

implications and applications.

4.2 Considerations of Features

The first step in our analysis involved cleaning the data. Entries that had null

values for any feature, including assignee, reportee, priority, resolution as well

as non resolved issues were discarded in our analysis. Certain features, such

as politeness, which originally classified a comment as either polite or impolite,

were manipulated and casted to numerical types in order to leverage the mod-

els used. Completion time was defined to be the difference in resolved time and
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created time. Entries whose completion time was less than 5 minutes were also

discarded in our analysis. This method was taken from Giger et al. [1] who no-

ticed removing that post-submission data of bug reports improves prediction

models. This is due to the fact that developers may find a bug and quickly fix

it, after which they open Jira to document the issue and immediately close it. In

addition, we discarded the feature resolution when predicting completion time

as it brought non-causal information to the model. Presumably, when predict-

ing an issue completion time, one would not know what the final resolution of

the issue is yet.

We predict three separate categories, issue completion time (how long it

took to complete a bug), issue priority (how important an issue is), and, issue

resolution (the final outcome of an issue). To predict these categories, our fea-

tures consisted of generic features found in an issue tracking system as well as

sentiment and emotion features found in the Jira dataset provided by Ortu et.

al. [4]. Each of these features were described in detail in Chapter 2. Our feature

set included all of the features described in Chapter 2 of the Ortu et. al. Jira

dataset, but low weighted features were dropped throughout the analysis.

A novel aspect of this work was the binning of the completion time of bug

reports. Giger et. al. classifies bug reports as either fast or slow using the median

of completion time [1]. In this paper, completion time is binned as show in

Table 4.1. Previous research [1, 20, 47] which focused on classifying fast or
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slow completion time used a given a threshold, usually the median of the given

data. Although it may be useful to use such an approach, we believe that our

binning is better suited for more practical applications. Our binning is also

more difficult to predict due to the increased number of classes, five instead of

2. The application of our binning is further discussed in Chapter 5.

Bin Completion Time (days)
Day <=1
Week > 1 and <= 7
Month > 7 and <= 31
Year > 31 and <= 365
Long Term > 365

TABLE 4.1: Issue Completion Time Bins

4.3 Initial Experiments

Most previous research in analyzing issue tracking systems focuses on using

naive bayes or linear models. We initially started our analysis by using such

methods to predict completion time using a fast and slow split. We noticed that

naive bayes methods did not perform as well as logistic regression in classify-

ing issue completion. Using logistic regression, we saw similar results to pre-

vious research, varying dependent on the features used; we found that reportee,

assignee, watchers, and, votes are the most influential features. Regardless of our

feature selection, we were unable to improve the results of published papers.

In addition, we used a similar approach to predict issue resolution and pri-

ority. We noticed these results, in particular the precision and recall, were not
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as high as predicting completion time due to a large skew in the data. Most

issues were marked with a resolution of resolved meaning a developer has com-

pleted the task. In addition, most issues were marked with a priority of medium

as this is the default setting when creating a new Jira issue.

To reiterate Section 2.6, we have provided Table 4.2 to describe the features

used in our analysis.



Chapter 4. Experimentation 22

Feature Description

Assignee individual responsible for the completion of the

task, usually a software developer

Reporter individual overlooking the completion of the task,

usually a manager

Votes number of "likes" or "upvotes" on the issue, usually

used to express an importance of an issue

Watchers number of individuals who are following the issue

Sentiment sentiment score assigned to a comment as calculated

by SentiStrength

Politeness politeness score assigned to a comment as calculated

by Danescu et. al.’s tool

Politeness Confi-

dence Level

the confidence of the politeness score

Mood mood score assigned to a comment as calculated by

Pattern for Python

Modality linguistic modality score assigned to a comment as

calculated by Pattern for Python, i.e. the presence

of auxiliary verbs (e.g., could, would) and adverbs

(e.g., definitely, maybe) that express certainty

TABLE 4.2: Description of Features Used in Our Analysis
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4.4 Further Analysis

After some initial analysis, we decided to try different prediction models. We

attempted to use SVMs, random forests and gradient boosting to predict is-

sue completion time, priority and resolution. These models showed some im-

provement as compared to previous models used. They also provided feature

analysis in the form of weighted features.

Based on initial experiments, we narrowed down our final analysis to in-

clude two models, SVM using an RBF kernel and XGBoost. These two models

proved to be the most accurate in predicting our classes for issue completion

time, priority and resolution. For all of our analysis, we used an 80-20 data split

for training and testing. When training data, we used 5-fold cross validation

to build our models. To ensure that we would not overfit in our training, the

20% data split was set aside and only used in the final testing to get our results.

These results are described in Chapter 5.
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Chapter 5

Results and Evaluation

In this chapter we present our final results in predicting Jira issue completion

time, issue priority, and issue resolution. We compare our results to previous

research, when available, and provide an analysis and evaluation. The features

in this analysis are described in Section 4.3.

5.1 Issue Completion Time

We predict Jira issue completion time using two methods of binning: the fast/slow

approach as taken in previous research, and, our novel binning approach con-

sisting of day, week, month, year and, long-term classes as described in Table 4.1.

We note that the output classes are fairly evenly distributed.
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5.1.1 Results with SVM with RBF kernel

Table 5.1 shows our results predicting issue completion time using the fast/slow

bins using an SVM with an RBF kernel. Our results show extremely high pre-

cision and recall. Table 5.2 shows our results predicting issue completion time

using fine-grained bins using SVM with an RBF kernel. Increasing the num-

ber of output classes degrades the performance of the model, as expected, but

it still performs well. Note that the class long-term has the highest scores, fol-

lowed by year. Our results score higher precision and recall scores than those

presented by Ortu et. al. [14] and Giger et. al. [1] where similar analysis is

performed.

Bucket Precision (%) Recall (%) F1 (%)
Fast 95 91 93
Slow 85 92 88

TABLE 5.1: Predicting Fast/Slow Issue Completion Time using SVMs

Bucket Precision (%) Recall (%) F1 (%)
Day 65 78 71
Week 78 60 69
Month 85 66 74
Year 81 92 86
Long-Term 99 93 96

TABLE 5.2: Predicting Fne-grained Binned Issue Completion Time using
SVMs
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5.1.2 Results with XGBoost

Table 5.3 shows our results predicting issue completion time using the fast/slow

bins with XGBoost. Again, our results show high precision and recall. Table

5.4 shows our results predicting issue completion time using fine-grained bins

with XGBoost. Similar to SVMs, increasing the number of output classes de-

grades the performance of the model but it still performs fairly well. Also,

similar to SVMs, the class long-term has the highest scores, followed by year. In

general, the SVM approach performed better than XGBoost for this task.

Bucket Precision (%) Recall (%) F1 (%)
Fast 95 84 89
Slow 77 92 84

TABLE 5.3: Predicting Fast/Slow Issue Completion Time using XGBoost

Bucket Precision (%) Recall (%) F1 (%)
Day 56 67 61
Week 70 42 54
Month 70 44 54
Year 71 88 78
Long-Term 97 90 93

TABLE 5.4: Predicting Fne-grained Binned Issue Completion Time using
XGBoost

Class Weight (%)
Assignee 23
Reporter 55
Mood 3
Watchers 18

TABLE 5.5: Weights of XGBoost Predicting Jira Issue Completion Time

Table 5.5 shows the weight distribution of the XGBoost model. We note that
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the most weighted features include assignee and reporter as well as watchers.

Notably, the most weighted feature is the reporter, the individual who created

the issue ticket. These are features which are inherent in the Jira tracking system

and are created by users of the issue without writing comments. From the

perspective of issue comments, sentiment analysis and emotions do not play a

large part in predicting issue completion time.

5.2 Issue Resolution

We predict Jira issue resolution as the output class described in Section 2.6.

We note that the output classes are not evenly distributed and as such, com-

bined similar classes. Table 5.6 shows the approximate distribution per com-

bined class. Fixed includes only the Jira fixed class. Unfixed includes the Jira

classes cannot reproduce, rejected, and, won’t fix. Non-actionable issue includes the

Jira classes duplicate, out of date, and, incomplete and is meant to describe issues

which are faulty due to an error in writing the issue request.

Class Distribution (%)
Fixed 79
Unfixed 12
Non-Actionable Issue 9

TABLE 5.6: Distribution of Combined Jira Issue Resolution Classes
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5.2.1 Results with SVM with RBF kernel

Table 5.7 shows our results predicting issue resolution using an SVM with an

RBF kernel. We note very high scores, specifically for the fixed class.

Bucket Precision (%) Recall (%) F1 (%)
Fixed 93 99 96
Unfixed 95 77 85
Major 98 73 83

TABLE 5.7: Predicting Issue Resolution using SVMs

5.2.2 Results with XGBoost

Table 5.8 shows our results predicting issue resolution using XGBoost. These

results slightly mimic the results in Section 5.2.1. Table 5.9 shows the weights of

the features of the XGBoost model. These weights are similar to those described

in Section 5.1.2.

Bucket Precision (%) Recall (%) F1 (%)
Fixed 90 99 94
Unfixed 89 52 66
Major 83 63 72

TABLE 5.8: Predicting Issue Resolution using XGBoost

Class Weight (%)
Assignee 16
Reporter 42
Politeness Confidence level 15
Votes 13
Watchers 14

TABLE 5.9: Weights of XGBoost Predicting Jira Issue Resolution
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5.3 Issue Priority

We predict Jira issue priority with the output classes as described in Section 2.6.

We note that the output classes are not evenly distributed. Table 5.10 shows

the approximate distribution per priority class. Note that the majority of the

support is the major class, the default class when creating a Jira issue.

Class Distribution (%)
Blocker 2.5
Critical 5
Major 80
Minor 10
Trivial 2.5

TABLE 5.10: Distribution of Jira Issue Priority Classes

5.3.1 Results with SVM with RBF kernel

Table 5.11 shows our results predicting issue priority using using SVM with

an RBF kernel. Our results show varied results dependent on each class. The

classes critical and major scored nearly perfectly. These are classes which are

more common among Jira issues as they are more neutral priority assignments.

On the other hand, the classes blocker and trivial did not score so well. These

are classes which lie on opposite ends of the priority spectrum and hence have

the lowest number of instances.
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Bucket Precision (%) Recall (%) F1 (%)
Blocker 79 56 66
Critical 100 90 95
Major 93 99 96
Minor 92 69 79
Trivial 100 52 69

TABLE 5.11: Predicting Issue Priority using SVMs

5.3.2 Results with XGBoost

Table 5.12 shows our results predicting issue priority using XGBoost. This

model has very high precision, but recall and F-1 scores are very low compared

to the SVM model. Table 5.13 shows the weights of the features of the XGBoost

model. These weights are similar to those described in Section 5.1.2.

Bucket Precision (%) Recall (%) F1 (%)
Blocker 95 38 54
Critical 100 60 75
Major 88 99 94
Minor 92 45 61
Trivial 93 28 43

TABLE 5.12: Predicting Issue Priority using XGBoost

Class Weight (%)
Assignee 15
Reporter 39
Modality 7
Politeness Confidence Level 12
Votes 12
Watchers 14

TABLE 5.13: Weights of XGBoost Predicting Jira Issue Priority
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5.4 Evaluation of Results

Our feature analysis coincides with that of Ortu et. al. [14]. For the most part,

sentiment and emotion analysis of Jira comments did not play a large role in

predicting issue completion time, priority or resolution. It seems as such these

features are not indicative of the time it takes to complete an issue, the priority

an issue has, or the final outcome of an issue.

The most influential feature in predicting issue completion time, resolution

and priority was the reporter field, as well as the assignee and watchers fields.

These results coincide with that of Giger et. al. [1]. It is logical to assume

that an assignee will complete different issues in a similar manner, as their

ability to do their work probably does not change much. It is interesting to see

that the number of watchers on an issue is correlated to issue completion time,

resolution, and priority. This could imply that the higher number of individuals

are linked on an issue, the harder the assignee will work on that project to finish

it.

The most influential feature, reporter, was weighted much higher than any

other feature. This shows that the individual who opens an issue has a strong

influence on the issue. This individual is usually a project manager, senior

developer, or someone with more authoritative power in a company. This in-

dividual is directly responsible for setting an issue priority, and is able to push

developers/assignees to complete certain tasks. Thus his influence over Jira
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issues are verified in our analysis.

Our analysis can be used by software development product managers and

senior software engineers to analyze the performance of software development

teams. Our models can be used internally at companies to show time efficiency

of teams, to perform self evaluations, and to compare results to other software

engineering teams. Such analysis can show if there is room for improvement

for individuals or groups of individuals in a software development team.
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Chapter 6

Future Work

6.1 Additional Features

One area of future work includes adding additional features to analyze in par-

allel to an issue tracking system. Graziotin et. al. [36] have taken this approach

by conducting surveys of 181 software developer participants. Such an ap-

proach could be taken to construct a different set of features to explore. In ad-

dition to analyzing sentiment and emotions, other important attributes such as

productivity can be explored. These additional features can be obtained by sur-

veying software developers, to which questions such as “When are you most

happy at work?”, “What sort of projects do you enjoy working on the most?”,

or, “What sort of activities do you enjoy doing with your colleagues?” can be

asked. Although a bit unlikely, it could be possible that these new features

are able to predict issue completion time, priority and resolution. It could also

open different areas of research, in particular, the interaction between software
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engineers.

Another path of feature analysis includes attempting to group issue track-

ing system projects by industry and analyzing how software developers across

different fields compare. In addition, one may attempt to analyze how financial

aspects of software development roles play into happiness and productivity, as

well as various office “perks” such as the inclusion of an office gym, cafeteria,

health benefits, number of happy hours, etc. It would be interesting to quan-

tify each of these individual benefits, which can help new companies evaluate

which perks they choose to provide.

Further exploring the impact of assignee and reportee to issue tracking sys-

tems, one might analyze how specific assignees and reportees impact projects.

What sort of features are important in predicting specific reportee and assignee

issue completion time? Why is it that certain assignees and reportees have bet-

ter predictions of issue completion time, if that is true? This type of analysis

may require additional features which are not originally found in any issue

tracking system.

6.2 Cross Dataset Evaluation

Previous research focuses on analyzing an individual issue tracking system.

Another field of exploration includes linking user Jira and GitHub profiles,

which have different software development attributes, with social profiles such
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as Facebook, Twitter, Quora, etc. Such an analysis could provide insight on how

software developers differ in their interactions at work and outside of work.

Do they express positive and negative emotion differently? Do they use sim-

ilar lexicons to express themselves? Are they truly happy at work or are they

striving for something else in their lives? Such questions can be answered by

linking software developer profiles with social datasets.

6.3 General Improvement

A final recommendation for future work involves improving current features

in Jira and other issue tracking systems such as the sentiment and emotion

features. This would require improving the natural language processing tech-

niques used in applied tools, such as SentiStrength or Power for Python, for

short sentence text. This is an area that is commonly explored in research to-

day [49, 50, 51, 52, 53, 54]. Developing a domain specific tool would be useful

for such analysis, as it is likely that software engineering and people in tech-

nical occupations are likely to express emotions and sentiment differently than

people of other fields.
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Chapter 7

Conclusion

Analysing different features of the Jira issue tracking repository and perform-

ing model exploration, we were able to predict issue completion time, issue

priority, and issue resolution with high precision and recall. Building on pre-

vious research in predicting such issue tracking classes, we have confirmed the

importance of features such as reportee, assignee, and watchers. We also used a

novel approach in binning issue completion time, utilizing more fine-grained

categories for completion time.

Using SVMs and XGBoost we were able to create models that can be used by

product managers and senior software developers to perform self evaluations

of software development teams. Analyzing issue completion time and resolu-

tion can show how efficient a team is working and comparisons can be made to

external teams. Such an analysis can help improve individual developers and

teams and make the software development life cycle more efficient.
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